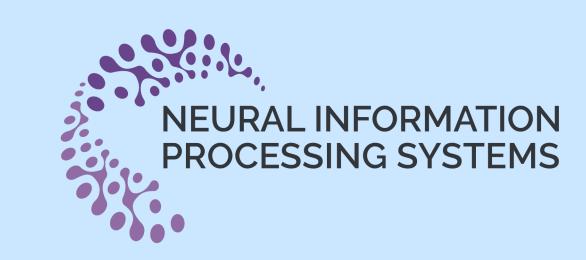
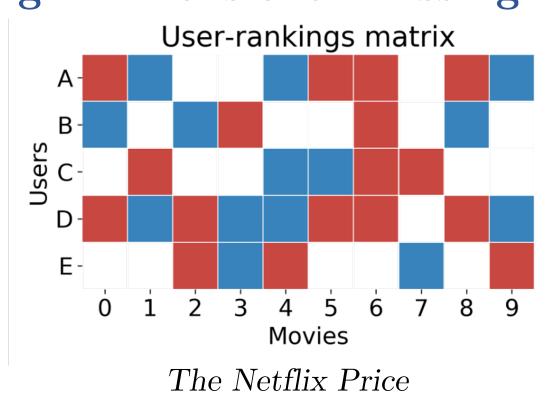
Missing Data Imputation by Reducing Mutual Information with Rectified Flows

Jiahao Yu¹, Qizhen Ying², Leyang Wang³, Ziyue Jiang⁴, Song Liu⁴



^{1,2,3} This work was partially done at University of Bristol.

High-Dimensional Missing Data



 $64{\times}64$ CelebA

Missing Data Imputation

We observe pairs of data and missing mask:

$$D = \{(x, m)\}, m \in \{0, 1\}^d, x_j = \begin{cases} x_j^*, & m_j = 1\\ \text{NaN} & m_j = 0 \end{cases}.$$

Goal: Given D, guess $\{x_j^* \mid m_j = 0\}$.

Missingness Assumptions [1]

- Missing Completely at Random (MCAR): $x^* \perp m$
- Missing at Random (MAR): $x_{1-m}^* \perp m \mid x_m^*$
- Missing not at Random (MNAR): Otherwise

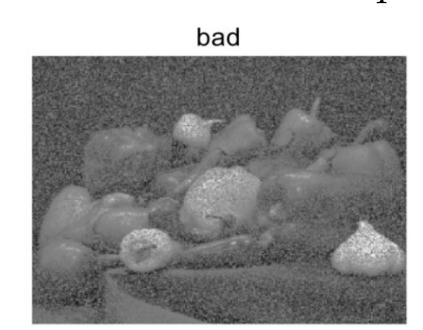
Existing Methods

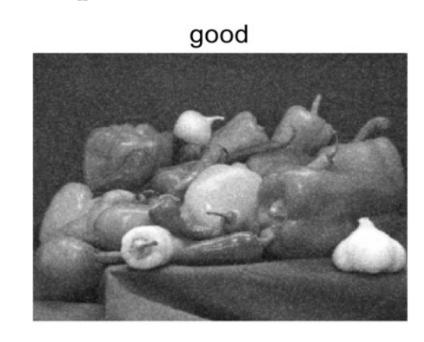
- One-shot (e.g., Mean, Median):
 Not using feature-wise relationships.
- Round-robin (e.g., MICE, HyperImpute):
 Fail to scale effectively to high-dimensional data.
- Others using generative modelling, e.g.,
 GAIN [2]: Alternate adversarial steps
 DiffPuter: EM + Diffusion iterations
 OTImpute: Match incomplete with complete samples

⇒ Can we design a joint imputation method?

Criterion for Good Imputation [2]

You cannot tell which pixel is imputed and which is not.





Train a classifier and an imputer alternately, so that the classifier cannot tell which coordinate is imputed.

Our Interpretation

If MCAR, the perfect imputation $\hat{x} = x^*$ implies $\hat{x} \perp m$.

• Minimizing MI $[\hat{x}, m] := \text{KL} [p_{\hat{x}, m} || p_m p_{\hat{x}}]$.

Mutual Information Reducing Iterations (MIRI)

- Set initial imputation $\hat{x}^{(0)}$, t = 1.
- Repeat:

$$\hat{x}^{(t)} = \arg\min_{\hat{x}} \text{KL} [p_{\hat{x},m} || p_m p_{\hat{x}^{(t-1)}}], \ t \leftarrow t + 1.$$

Prop. MIRI is proven to reduce the mutual information!

How to obtain $\hat{x}^{(t)}$?

Prop. $\hat{x}^{(t)}$ optimal iff

 $p_{\hat{x}^{(t)}}(x_{1-m} \mid x_m, m) = p_{\hat{x}^{(t-1)}}(x_{1-m} \mid x_m).$

- Finding the optimal imputer is the same as matching two conditional distributions!
- Construct a rectified flow ODE [3] that "transports" $\hat{x}^{(t-1)}$ to $\hat{x}^{(t)}$.

Train a (Conditional) Rectified Flow [3]

Learn velocity field v by minimizing MSE loss:

$$v^* = rg \min_v \int_{ au} \mathbb{E} \Big\| ilde{x}^{(t-1)} - \hat{x}^{(t-1)} - v_ au \left[x_{1-m}(au), \hat{x}_m^{(t-1)}, \hat{x}_m^{(t)}
ight] \Big\|^2$$

where $x(\tau) = \tau \tilde{x}^{(t)} + (1 - \tau)\hat{x}^{(t-1)}$ and $\tilde{x} = \mathtt{shuffle}(\hat{x})$.

Experiments

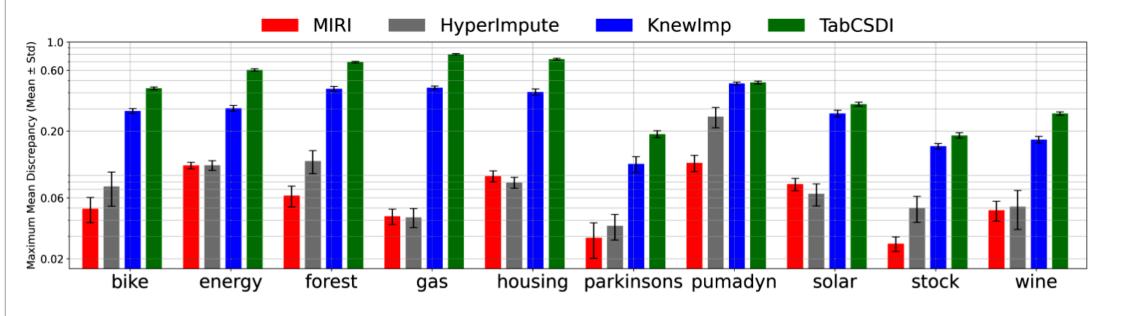


Figure 2: MMD on UCI datasets with 60% data missing. The lower the better.

(a) 15 uncurated 32×32 CIFAR-10 images and their imputations. Pixels are removed from all RGB channels.



(b) 15 uncurated 64×64 CelebA images and their imputations. Pixels are removed from each RGB channel independently.

References

- [1] D. B. Rubin. Inference and missing data. Biometrika, 63(3), 581-592, 1976.
- [2] J. Yoon, J. Jordon, and M. van der Schaar. GAIN: Missing data imputation using generative adversarial nets. ICML 2018.
- [3] X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. ICLR 2023.