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Mutual Information with Rectified Flows -
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Missing Data Imputation

We observe pairs of data and missing mask:

T m,; =1
D={(x,m)},me{0,1} z, = 7 / .
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Goal: Given D, guess{z} | m; = 0}.

Missingness Assumptions |1}
* Missing Completely at Random (MCAR): x* 1L m
« Missing at Random (MAR): z7_,,, L m | z},
* Missing not at Random (MNAR): Otherwise

Existing Methods
* One-shot (e.g., Mean, Median):

Not using feature-wise relationships.

* Round-robin (e.g., MICE, HyperImpute):
Fail to scale etfectively to high-dimensional data.
* Others using generative modelling, e.g..
GAIN [2|: Alternate adversarial steps
DiffPuter: EM + Diffusion iterations
OTImpute: Match incomplete with complete samples

= (Can we design a joint imputation method?

Gow to obtain £(t) ?
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Criterion for Good Imputation |2|

You cannot tell which pixel is imputed and which is not.

bad good

Train a classifier and an imputer alternately, so that the

classifier cannot tell which coordinate is imputed.

Our Interpretation

If MCAR, the perfect imputation £ = ™ implies z L m,
* Minimizing MI |, m| := KL [pz m || DmPz] -

Mutual Information Reducing Iterations (MIRI)

e Set initial imputation (9, ¢t = 1.

* Repeat:

#*) = arg min; KL DPim||PmPsrc-v], t —t+ 1.

Prop. MIRI is proven to reduce the mutual information!

\ii
Prop. ) optimal iff 4

P (T1—m | Tm, M) = pze—1 (T1—m | Tm).
 Finding the optimal imputer is the same as
matching two conditional distributions!
* Construct a rectified flow ODE |[3| that
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Train a (Conditional) Rectified Flow |3]

Learn velocity field v by minimizing MSE loss:

- 2
vF = argmin/IE‘ -1 _ 201 _ v, xl_m(r),@fﬁ‘”,@@] H

where z(7) = 72® + (1 — 7)2*Y and & = shuffle(z).

Experiments
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Figure 2: MMD on UCI datasets with 60% data missing. The lower the better.

Ground Truth Partial Observatlons MIRI (Ours*)
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(a) 15 uncurated 32>< 32 CIFAR-10 images and their imputations. Pixels are removed from all RGB channels
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(b) 15 uncurated 64><64 CelebA images and their imputations. Pixels are removed from each RGB channel
independently.
References

1] D. B. Rubin. Inference and missing data. Biometrika, 63(3), 581-592, 1976.
2] J. Yoon, J. Jordon, and M. van der Schaar. GAIN: Missing data imputation using
generative adversarial nets. ICML 2018.

3] X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer
data with rectified flow. ICLR 2023.




